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SUMMARY 2\, 5
/'

A low-speed wind tunnel investigation was conducted
to determine the flow fields about delta and double-delta
wings. Semi-span models consisting of a 62° sweep delta
wing-body and a 75°/62° double-delta wing-body were tested
at a Reynolds number per foot of 1.0 x 106. Detailed sur-
veys of the three-dimensional velocity fields above the
wings are presented. 1In addition, three-component force
data, pressure distributions, surface tuft patterns and oil
streak patterns are presented and discussed. It is con-
cluded that the principal effect of the strake on the double-
delta configuration is to increase the vortex strength over
the wing, resulting in an increase in normal force developed

for a given angle of attack.



SYMBOLS

a wing semi-span at any chordwise station x
2
. (span)
A aspect ratio, TW%EE—EEEE)
b wing maximum semi-span
c wing chord b
2
] wing mean geometric chord, /; ¢’ dy
b
j( cdy
0
c 1ift coefficient, Lx
L i coe ' 35
C drag coefficient D_
D g ' 38
C pitching moment coefficient M
M ' gS€
D drag force
L lift force
M pitching moment
p pressure
. 1 2
q dynamic pressure, 5 A
S wing area
v velocity
X coordinate in chordwise direction
Y coordinate in spanwise direction
A coordinate perpendicular to wing chord plane
1 angle of attack
Subscripts
@ free stream conditions
62 pertaining to 62° delta wing

induced




« Introduction

The advent of supersonic aircraft has dictated the use
of thin, sharp-edged, highly-swept wings. These wings, how-
ever, suffer from two low-speed problems which limit landing
and takeoff speeds: maximum lift-drag ratio occurs at a low
value of 1lift coefficient resulting in speedwise instability
when flying at low speeds, and a forward movement of the
neutral point reduces pitching stability.

The theory for the lift developed by highly-swept delta
wings at low speeds was first developed by Jones (ref. 6)
for small angles of attack, and later extended by Brown and
Michael (ref. 2) and Mangler and Smith (ref. 1) to include
the non-linear effects of assumed leading edge vortex systems.
Most delta wings at high angles develop less lift than pre-
dicted by these latter methods. Only in rather special cases
(such as ref. 7) have the theoretical lifts been achieved.
While the primary and secondary vortex systems associated with
delta wings at low speeds have been observed gqualitatively,

little guantitative data exist for these flow fields.

The recent supersonic commercial transport airplane
competition has brought about great interest in delta wings
with an increased sweep angle along the inboard portion, i.e.,
double-delta wings (see ref. 4). The interactions of inboard
and outboard panel vortex systems are not included in either

of the lifting theories mentioned above. The purpose of the

present investigation was to obtain quantitative flow field

information for a delta wing at high-angle low-speed conditionmns,



and to determine the effects of adding a high sweep

strake to the wing (making a double-delta configuration).




WIND TUNNEL MODELS AND INSTRUMENTATION
MODELS
Two half-models consisting of wing and fuselage were

tested (figs. la, 1lb): a 62° delta configuration and a

75°/62° double-delta. The basic delta has a 62° leading
edge sweep and is cropped slightly. The wing sections are
biconvex with 2.5% maximum thickness to chord. This gives
sharp leading and trailing edges with included angles of
only 6°. The wing has no camber or twist.

The second wing is a double-delta wing derived from
the basic wing by the addition of a symmetric 75° sweep
leading edge strake which fairs into the basic delta thick-
ness contour at the 50% root chord location. (Both model
configurations utilize the same aft panel.)

The wing panels are constructed of aluminum. The 62°
delta is fitted with 64 static pressure taps on one surface
and the 75°/62° double delta has 71 taps. The fuselage is
a simple body of revolution constructed of mahogany. The
wings mount 1/4 diameter below the fuselage centerline. No
fillets were used at the wing-fuselage junctures. Because
of the symmetry of the wings, both upper and lower surface
pressure distributions were obtained from the same static
pressure holes by a repositioning of the wings relative to
the fuselages.

Both semi-span models were installed adjacent to a 10-
by 10-ft. reflection plane which was mounted three inches above

the tunnel floor in order to minimize the reflection plane



boundary layer adjacent to the model. Preliminary wind
tunnel tests using a rude semi-span model were conducted
early in the program to ascertain that the reflection plane
boundary layer would not significantly interact with the
wing flow field at 1lift coefficients of the order of unity.
During these investigations reflection plane surface tufts
and oil streaks were observed to determine whether the low
pressure field of the wind would induce any significant flow
from the reflection plane boundary layer onto the wing upper
surface.

A clearance gap between the fuselage and the reflection
plane was maintained at 0.05 inch to prevent interference
under loaded conditions. During initial exploratory inves-
tigations, gaps up to 0.25 inch were determined to have
negligible influence on force measurements,
INSTRUMENTATION

At the outset it was recognized that one of the principal
problems in an investigation of this sort would be to develop
velocity instrumentation capable of measuring accurately the
highly deviated flow field. After some preliminary calibrations,
a rather small combination pitot-yaw probe was selected. The
probe is a 1/8 inch diameter tube with a truncated conic shaped
tip. The tip has five pressure ports; a center total and four
statics located at 90° intervals around the total. The probe
stem is fitted with a small drive motor which permits remote
rotation + 180° in the sidewash direction. The entire apparatus

was calibrated for upwash angles of + 45°. 1In operation the




. probe was rotated to null the Ap sensed by the sidewash holes.
Probe sidewash angle as well as upwash Ap and Piotal Were then
recorded. From these data and the calibration information, the
three-dimensional direction and magnitude of the unknown velocity
were obtained.

The velocity probe was mounted on a stand parallel with
the wing surface (figs. 3a through 3d). The stand permitted
manual positioning of the probe in a plane parallel to the
wing chord plane (x, y plane). A linear actuator permitted re-
mote traversing perpendicular to the wing (z-direction) for
distances up to about 15 inches. (See figure 2 for coordinate
system.) The five velocity probe pressures were read by electri-
cal transducers and printed directly onto IBM cards. The ex-
perimental values were then reduced using the IBM 1620 computer.
Overall accuracies are estimated to be + 2° for upwash and
sidewash angles and + 2% for velocity.

TESTS AND CORRECTIONS

Experimental tests were conducted in the Wichita State
University 7- by 10-ft. wind tunnel, a low speed, closed
circuit tunnel. All tests were conducted at a dynamic pressure
of 40 psf which corresponds to a Reynolds number éer foot of
1.0 x 106. Lift, drag and pitching moment data were obtained
from both models in 2° increments from -10° to +40° angle
of attack, using the tunnel main balance system. Since this
information is utilized in conjunction with measured pressure
and flow field data, jet boundary corrections were not applied

to the bulk of the force data. The following correction was



applied to the data indicated in figs. 19a and 19b, which

compare measured normal force coefficients with theory:

Ao, = 0.756 CL (degrees)

The blockage correction was negligible. The method of com-
paring measured induced drag with theory (figs. 20a and
20b) obviates the need to apply boundary corrections.

Static pressure distributions were obtained for upper
and lower surfaces of both wings from -10° to +40° in 5°
increments. Upper surface tuft and oil streak photos were
obtained at the same angles.

Flow field upper surface velocity distributions were
obtained at 5°, 10° and 20° angles of attack using the
velocity probe. The 5° and 10° angles were selected to
bracket the strake vortex "rollup" observed on the double-
delta wing in early oil streak and tuft photos. (See page
12 for a discussion of this phenomena.) The 20° angle was
selected as being near a lift coefficient of unity, which
represents somewhat near the present upper limit of useful
CL for wings of this type. A probe image was constructed
and an image calibration was obtained to correct the ‘indicated
upwash angles at positions very close to the wing. This
correction amounts to -4.2° at zero gap and is less than

-0.5° for z-distances greater than 0.4 inches.




DISCUSSION OF FLOW FIELD DATA

The flow fields about slender sharp-edged delta wings
are characterized by three more or less distinct types of
flow discussed by Winter in 1936 (ref. 3):

1. At very small angles, unseparated flow with Prandtl.
type 1lift.

2. At intermediate angles, leading edge separation
with vortices washing over the upper surface creating
additional 1lift.

3. At high angles, separated wake type flow.

In flow of type 2 it has been observed by many investigators
that a secondary separation occurs along a line outboard of the
vortex, due to the adverse pressure gradient imposed on the
cross-flow boundary layer. It is flow of type 2 that is of
primary interest in the present investigations.

FLOW FIELD CHARACTERISTICS - DELTA WING

The data for the basic delta wing are all in substantial
agreement with the patterns discussed above.

Pressure Distributions (figs. 4a through 4i)

Pressure data at angles of attack from 5° to 20°
show a sharp ridge of negative pressure in close proximity
to the leading edge. In the range from 10° to 20° the ef-
fects of secondary separation are apparent and the growth
of the separated region is seen. At 25° the wing appears to
be entirely separated and from 25° to 40° the upper surface
suction actually decreases. The maximum lift coefficient

occurs at 30°,
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Comparisons of the measured pressure distributions
with the theories of refs. 1 and 2 are shown in figs. 6a
and 6b. The effects of the secondary separation in reducing
nose suction and moving the leading edge vortex inboard are
obvious. A displacement of the lifting vortex from the wing
surface near the trailing edge is evideneced by the reduced
suction developed over the aft stations.

Streaks and Surface Tufts (figs. 7a through 7g, 9a
through 91i)

Streak photos show that the secondary separation line
moves inboard with increasing angle of attack. Surface
tufts clearly mark the position of the lifting vortex and
secondary separation. At 20° angle of attack, evidence
of separation near the trailing edge appears. At 25° the
separation has progressed considerably, and at 30° the flow
appears completely separated.

Flow Field Maps (figs. 1lla through 1llu, 13a through
131)

The upper surface flow field velocity maps for 5° angle
of attack show the presence of a vortex sheet or elliptical
core of vorticity extending over roughly the outer third of
the wing semi-span. At 10° and 20° angles the circulation
components of velocity have become progressively stronger
and the patterns are nearly circular. Centers of rotation
move upward and inboard as angle of attack is increased.

The reversed rotation vortex usually attributed to secondary
separation is visible only in the extreme aft position at
20° angle of attack. Figures 13a through 13i are presented

to illustrate the flow in planes below the vortex, near the




plane of the vortex, and above the vortex.

Forces and Moments (figs. 16a through 16c, 19a, 20a)

Conventional 1lift, drag, and moment coefficient data
are presented. Measured normal force coefficients are
compared with the theories of refs. 1 and 2, on fig. 19%a.
For these comparisons, the theoretical normal force co-
efficients were calculated assuming that the area aft of
the wing tip crop point develops no normal force. As seen,
the normal force developed increases in a greater than
linear fashion with angle of attack, but is substantially
less than the value predicted by either theory. The rather
sharp stall observed in these tests is not characteristic
of delta wings. It is believed to be due to some boundary
effect, possibly a reflection plane boundary layer inter-
action (see page 6). Since the stall occurs at angles
well beyond the region of primary interest, (o up to 20°)
no attempt was made to isolate the cause.

The induced drag data show good agreement with cal-

culated CD. = C. tan a, (fig. 20a) illustrating that the

L
resultant éorce developed by a wing with leading edge sepa-
ration is essentiaily a normal force.
The moment data exhibit a non-linear increase in pitching
moment with 1lift coefficient (pitch-up), for lift coefficients

above 0.3. Since this is considerably below C , the pitch-

L
max

up represents the practical limit on CL (or minimum flying
speed) for wings of this type.
FLOW FIELD CHARACTERISTICS ~ DOUBLE-DELTA WING

Flow fields of the double-delta wing are characterized

11
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by the presence of two leading edge vortex systems. At 5°
angle of attack the two systems appear to be more or less
independent. Between 5° and 10° the two systems interact,
and for angles of 10° and greater, the flow appears to be
characterized by a single primary vortex which forms along
the strake leading edge and deflects outboard at the leading
edge breakpoint. The result is a stronger circulation over
the aft panel than would otherwise be present, and a
corresponding increase in normal force.

Pressure Distributions (figs. 5a through 5i)

The upper surface pressure at 5° angle of attack shows
two distinct negative pressure ridges, indicating the presence
of two vortex cores. At 10° and 20° a single ridge is evident,
which bends distinctly at the leading edge break. This ridge
peaks at the wing apex and again near the leading edge break.
At 20° angle of attack a valley of reduced suction appears
near the trailing edge and at 25° this valley has progressed
forward to nearly the leading edge break point. At 30° and
higher angles, the pressure ridge is much flatter than at
lower angles, and the aft panel peak has disappeared.

Streaks and Surface Tufts (figs. 8a through 8h, 10a
through 101i)

Streak and surface photos at 5° indicate clearly the
presence of the two separate vortex systems. At 10°, only
one vortex is evident over the aft panel. A streak photo
at 7° indicates that the rollup of strake and aft panel

vortex systems is progressing forward from the trailing

edge.




At 20° and 25° angles of attack the streak photos exhibit
a double separation line in the vicinity of the trailing edge
(figs. Be and 8f). The wedge-shaped area between these double
lines coincides with the position of the reduced suction valley
mentioned above (figs. 5e and 5f). The tufts in this wedge
region are distinctly oscillating (fig. 10f), whereas tufts
in other areas outboard of the secondary separation line
are steady and oriented essentially parallel to the leading
edge. It appears that propagation of this wedge forward as
angle of attack is increased results in a transformation from
vortex type flow to wake type flow.

Flow Field Maps (figs. 12a through l12aa, 1l4a through 14i,
15)

Flow field maps at 5° angle of attack exhibit the vortex
sheet character observed with the delta wing. In addition,
however, a vortex emanating from the strake appears as a sepa-
rate circular pattern over the aft panel. At 10° and 20°
angles only one vortex center appears, indicating that rollup
has occurred. The upward and inboard movement of the vortex
centers and increased circulation with increasing angle of
attack are clearly indicated. Fig. 15 includes some lower
surface flow field measurements which show greatly reduced
sidewash components.

Forces and Moments (figs. 17a through 171, 19b, 20b)

These data show generally the same trends evident with
the delta wing. The remarks made on page 11 concerning the
stall characteristics and induced drag are applicable here

as well. 1In this case pitch-up occurs at a CL of about 0.4.

13



COMPARISON OF DOUBLE-DELTA AND DELTA WINGS (figs. 18a through
i8c)

In order to compare directly the forces and moments de-

veloped by the two wings, the following parameters are used:

lift: —2 = —2

g (span)

C

drag: .PTD_ = _._.___9_2_.

g (span)

C —
pitching moment: Kﬁ < = M 5
Ceo q (span) C62

The data in this form show that the delta and double-
delta develop the same lift up to an angle of attack of about
5°., The strake vortex observed at 5° (discussed above) ap-
parently contributes a negligible amount of 1lift. Close
examination of the flow field velocity maps shows that the
strength of the strake vortex is quite small. Beyond 5° the
double-delta wing develops greater 1lift.

The drag data show that the delta and double-delta
wings have the same drag for a given lift up to a CL/A of
about 0.45. Beyond this point the delta wing develops less
drag for a given lift than the double-delta wing. The lower
drag for the double-delta wing is due to the lower angle

required for a given 1lift, since C_. /A is essentially equal

D
i
to (CL/A) tan o, as discussed previously (page 11).

The moment data are compared in fig. 18c. For this

1k




comparison the moment data of the double-delta wing have

been referred to a position which gives it the same stability
as the delta wing at zero lift. On this basis, the pitch
characteristics of the two wings are identical for values

of CL/A less than 0.5. The pitch-up tendency £for both

wings begins at a CL/A of about 0.25. Above CL/A of 0.5,

the double-delta pitches up at a greater rate, indicating

the effects of the strake lift.

An interesting feature of the flow fields is the com-
parison of the positions of the vortex centers (as nearly as
they can be defined by observations of the velocity maps).
These comparisons (for example figs.1llu and 12aa) show
no really significant changes of vortex position due to the
addition of the strake. Correlation of pressure and streak
information in figs. 2la through 22c¢ shows that the seéondary
separation is consistently located just outboard of the mini-
mum pressure ridge, as would be anticipated from boundary
layer theory.

A secondary vortex with reversed sense of rotation
has been observed by numerous investigators (for example
ref. 5). The secondary vortex is clearly shown in the
velocity map of fig. 1lu, for the delta wing, but was not
observed on the double-delta wing. This vortex may have
been present in other cases, but if so, it was too small in

magnitude to be observed.

15
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CONCLUSIONS

1. Delta wing flow fields measured in the present
investigation deviate significantly from idealized mathe-
matical models because secondary separation causes dis-
crepancies in vortex locations, and grossly affects pressure
distributions.

2. The resultant forces developed by both wings are
essentially normal forces, in accordance with theory.

3. Normal forces developed by both wings are sig-
nificantly less than predicted by existing theories.

4. At moderate to high angles of attack the double-delta
wing strake vortex rolls up with the aft panel vortex, with
a resultant increase in circulation and normal force developed
over the aft panel.

5. Vortex core positions and secondary separation are
not grossly affected by the addition of the strake. The
principal influence is to increase.the strength of the

circulation.
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